Journal of Organometallic Chemistry, 273 (1984) 323-331 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

MEHRFACHBINDUNGEN ZWISCHEN HAUPTGRUPPENELEMENTEN UND ÜBERGANGSMETALLEN X *. AUFBAU EINER TETRAEDRISCHEN TeMnFe₂-CLUSTERVERBINDUNG NACH DEM ISOLOBAL-PRINZIP

WOLFGANG A. HERRMANN*, CHRISTIAN HECHT,

Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität, Niederurseler Hang, D-6000 Frankfurt am Main 50 (Deutschland)

MANFRED L. ZIEGLER und THOMAS ZAHN

Anorganisch-chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg 1 (Deutschland)

(Eingegangen den 4. April 1984)

Summary

Treatment of the tellurium complex $(\mu$ -Te)[$(\eta^5-C_5Me_5)Mn(CO)_2$]₂ (1; Me = CH₃) with enneacarbonyldiiron yields the tetranuclear cluster compound 2 of composition $(\eta^5-C_5Me_5)MnFe_2Te(CO)_8$. From a structural point of view, this compound is considered to be a metallatetrahedral-type molecule, according to a single-crystal X-ray diffraction study, thus following the concept of isolobal connectivity (monoclinic, space group $P2_1/n$; a 982.4(2), b 1483.6(3), c 1535.5(5) pm, β 97.22(2)°; R(iso) = 0.13, R(aniso) = 0.036, $R_w = 0.033$).

Zusammenfassung

Durch Umsetzung des Tellur-Komplexes $(\mu$ -Te)[$(\eta^5$ -C₅Me₅)Mn(CO)₂]₂ (1; Me = CH₃) mit Enneacarbonyldieisen ist die vierkernige Cluster-Verbindung 2 der Zusammensetzung $(\eta^5$ -C₅Me₅)MnFe₂Te(CO)₈ zugänglich, die strukturchemisch nach Ausweis einer Einkristall-Röntgenstrukturanalyse und unter Zugrundelegung der Isolobal-Analogie als Metallatetrahedran aufzufassen ist (monoklin, Raumgruppe $P2_1/n$; a 982.4(2), b 1483.6(3), c 1535.5(5) pm, β 97.22(2)°; R(iso) = 0.13, R(aniso) = 0.036, $R_w = 0.033$).

^{*} IX. Mitteilung s. Lit. 1.

Einleitung

Seit Hoffmann die Isolobal-Analogie formuliert und als umfassendes Ordnungsprinzip insbesondere für die metallorganische Strukturchemie erkannt hat [2], ist die Syntheseplanung in diesem Bereich der Chemie um ein erfolgversprechendes Konzept reicher geworden. Auch strukturchemisch kompliziert aufgebaute Organometall-Verbindungen können nach dem isolobalen Modell auf einfache organische Kohlenwasserstoff-Analoga reduziert und einem Verständnis näher gebracht werden. Hierüber hat Stone in einem unlängst erschienenen Übersichtsartikel umfassend berichtet [3]. Aus präparativer Sicht ist die Isolobal-Analogie bei der schrittweisen Konstruktion von heteronuclearen Clustermolekulen [4] auf dem Wege zu einer durchschlagenden Synthesestrategie. Hierfür bietet diese Arbeit ein ausgewähltes Beispiel.

Präparative Ergebnisse

Kürzlich ist uns die Synthese der Komplexverbindung 1 gelungen, die strukturchemisch durch ein gewinkeltes Mangan-Tellur-Mangan-Gerüst ausgewiesen ist [5]. Sowohl aufgrund der extrem kurzen Mangan-Tellur-Bindungslängen (245.9(2) pm) als auch aufgrund der ausbleibenden Protonierung der substituentenfreien Tellur-Brücke sind für diese Gerüststruktur MnTe-Bindungen mit Mehrfachbindungsanteilen anzunehmen [5,6]. Die Teilstrukturen dieser Verbindung sind Bestandteile der folgenden isolobalen Ketten:

$$(\eta^{5}\text{-}C_{5}\text{Me}_{5})\text{Mn}(\text{CO})_{2}(d^{6}\text{-}\text{ML}_{5}) \longleftrightarrow \text{CH}_{2} \longleftrightarrow \text{CH}^{-}$$
$$\text{Te} \longleftrightarrow \text{CH}_{2} \longleftrightarrow \text{CH}^{-} \longleftrightarrow \text{CH}^{-} \longleftrightarrow \text{C}^{2^{-}}$$

Um das Organometall-Fragment $(\eta^5-C_5Me_5)Mn(CO)_2$ sowie das Hauptgruppenelement Tellur mit Komplexspezies zu einem Metallatetrahedran-Gerüst zusammenzufügen, sind nach der isolobalen Beziehung

$$Fe(CO)_3$$
 $(d^8-ML_3) \leftarrow CH^+$

beispielsweise zwei Fe(CO)₃-Systeme notwendig. Bei der Verknüpfung von jeweils zwei CH⁺- und CH⁻-Fragmenten kommt formal Tetrahedran, C₄H₄, zustande. Das präparative Konzept zum Aufbau eines MnTeFe₂-Metallatetrahedrans musste folglich in der Umsetzung des μ -Tellur-Komplexes 1 mit Enneacarbonyldieisen bestehen. Erwartungsgemäss reagieren beide Komponenten in Diethylether-Suspension bei Raumtemperatur unter CO-Eliminierung und halbseitiger Fragmentierung des ursprünglich gewinkelten MnTeMn-Gerüsts von 1, wobei sich die schwarze, gut kristallisierende Cluster-Verbindung 2 mit der nach der Isolobal-Beziehung vorauszusagenden Bruttozusammensetzung (η^5 -C₅Me₅)MnFe₃Te(CO)₈ bildet (Gl. 1).

Kristall- und Molekülstruktur des Metallatetrahedrans

Die Verbindung kristallisiert aus Diethylether/n-Hexan bei -35° C monoklin in der Raumgruppe $P2_1/n$. Atomkoordinaten und thermische Schwingungsparameter

TABELLE 1

ATOMKOORDINATEN (IN BRUCHTEILEN DER ZELLKANTEN, ×10⁴) UND THERMISCHE PARAMETER U_{equiv} (×10⁴) DES METALLATETRAHEDRANS 2 "

Atom	x/a	y/b	z/c	U _{equiv}	
Те	2134(0)	2352(0)	2747(0)	483(1)	
Mn	9557(1)	2356(1)	2656(0)	355(2)	
Fe(1)	0999(2)	3216(1)	1483(1)	486(5)	
Fe(2)	0986(2)	1413(1)	1538(1)	512(6)	
C(1)	8752(5)	1548(4)	1864(3)	483(20)	
O(1)	7843(4)	1137(3)	1496(3)	638(16)	
C(2)	8792(5)	3171(4)	1860(3)	455(19)	
O(2)	7904(4)	3615(3)	1509(2)	631(15)	
C(3)	0055(6)	3284(4)	0422(4)	682(25)	
O(3)	9507(5)	3373(4)	- 0286(3)	1095(24)	
C(4)	2616(7)	3315(5)	1097(4)	788(28)	
O(4)	3643(5)	3394(4)	0838(3)	1238(28)	
C(5)	0948(5)	4366(4)	1824(4)	694(25)	
O(5)	0890(6)	5095(3)	2026(4)	1050(24)	
C(6)	0070(5)	1281(5)	0456(4)	735(26)	
O(6)	9535(6)	1155(5)	- 0238(4)	1120(25)	
C(7)	2586(7)	1200(5)	1192(3)	801(29)	
O(7)	3624(5)	1048(4)	0952(3)	1218(28)	
C(8)	0862(6)	0300(4)	1970(3)	631(23)	
O(8)	0751(5)	-0402(3)	2246(4)	945(22)	
C(9)	8514(5)	1607(3)	3580(3)	474(19)	
C(10)	9808(5)	1836(3)	4007(3)	484(19)	
C(11)	9884(5)	2804(4)	4038(4)	504(20)	
C(12)	8636(5)	3146(3)	3607(3)	474(18)	
C(13)	7775(5)	2415(4)	3322(4)	488(18)	
C(14)	7925(7)	0668(4)	3527(4)	813(29)	
H(14A)	7099(7)	0678(4)	3120(4)		
H(14B)	7704(7)	0531(4)	4104(4)		
H(14C)	8534(7)	0217(4)	3351(4)		
C(15)	0824(6)	1182(4)	4449(3)	790(28)	
H(15A)	1592(6)	1584(4)	4561(4)		
H(15B)	1069(6)	0682(4)	4103(4)		
H(15C)	0575(6)	0964(5)	4996(3)		
C(16)	1006(6)	3340(3)	4540(4)	889(30)	
H(16A)	1842(6)	2998(4)	4609(4)		
H(16B)	0754(6)	3486(4)	5106(4)		
H(16C)	1137(6)	3885(5)	4224(4)		
C(17)	8225(7)	4130(4)	3587(3)	824(29)	
H(17A)	7509(7)	4285(4)	3127(4)		
H(17B)	9057(7)	4431(5)	3490(4)		
H(17C)	7964(7)	4312(5)	4142(3)		
C(18)	6310(6)	2465(4)	2916(4)	804(27)	
H(18A)	5956(7)	1864(5)	2834(3)		
H(18B)	6074(6)	2806(5)	2388(5)		
H(18C)	5919(6)	2748(5)	3390(4)		

^a U_{equiv} ist definiert als ein Drittel der Spur der orthogonalisierten U-Matrix.

TABELLE 2

AUSGEWAHLTE STRUKTURDATEN DES METALLATETRAHEDRANS 2

Bindungslangen (pr	1)				
Mn-Fe(1)	2	74.3(2)	Mn-C(1)		181.7(5)
Mn-Fe(2) 2'		73.6(2)	Mn-C(2)		181.3(5)
Fe(1)-Fe(2)	2	67.7(2)	Fe(2)-C(1)		232.0(6)
Mn-Te		51.8(1)	Fe(1)-C(2)		231.5(5)
Fe(1)-Te	2	47.2(1)	Fe(1) - C(3)		177.3(6)
Fe(2)-Te		47.6(1)	Fe(1)-C(4)	Fe(1)-C(4)	
Mn-C(9)	2	16.0(5)	Fe(1) - C(5)		178.6(7)
Mn-C(10)	2	19.9(5)	Fe(2) - C(6)		179.8(6)
Mn-C(11)	2	20.8(5)	Fe(2)-C(7)		175.1(7)
Mn-C(12)	2	15.8(5)	Fe(2)-C(8)		178.9(6)
Mn-C(13)	2	13.8(5)	C(3)-O(3)		115.9(7)
C(1)-O(1)	1	16.6(6)	C(4)-O(4)		113.7(9)
C(2)-O(2)	1	17.0(6)	C(5)-O(5)		112 9(8)
Fe(2)-O(1)		.97 3(5)	C(6)-O(6)	C(6)-O(6)	
Fe(1)-O(2)	2	.98.2(5)	C(7)-O(7)		114,8(9)
Mn-Cp(Cent) ^a	1	80.6(7)	C(8)-O(8)		113 6(8)
Bındungswinkel (gro	ud)				
Fe(1)-Te-Fe(2)		65 5(0)	Mn-C(1)-O(1)		155.6(5)
Fe(1)-Te-Mn		66.7(0)	Mn-C(2)-O(2)		155.3(5)
Fe(2)-Te-Mn		66.4(0)	Fe(2)-C(1)-O(1)	Fe(2)-C(1)-O(1)	
Fe(2)-Fe(1)-Te		57,3(0)	Fe(1)-C(2)-O(2)	Fe(1)-C(2)-O(2)	
Te-Fe(1)-Mn		57.5(0)	Fe(1)-C(3)-O(3)		175.1(6)
Mn-Fe(1)-Fe(2)		60 6(0)	Fe(1)-C(4)-O(4)		178 5(6)
Mn-Fe(2)-Fe(1)		60 9(0)	Fe(1)-C(5)-O(5)		178 5(5)
Mn-Fe(2)-Te 57.5(57.5(0)	Fe(2)-C(6)-O(6)		176.0(6)
Fe(1)-Fe(2)-Te		57.2(0)	Fe(2)-C(7)-O(7)		178 7(5)
Fe(1)-Mn-Fe(2)		58.5(0)	Fe(2)-C(8)-O(8)	Fe(2)-C(8)-O(8)	
Fe(1)-Mn-Te		55.9(0)	Fe(2)-Mn-C(1)	Fe(2)-Mn-C(1)	
Fe(2)-Mn-Te		56.1(0)	C(6) - Fe(2) - C(7)		93 7(3)
Fe(1)-Mn-C(2)		56 8(2)	C(6) - Fe(2) - C(8)		101 1(3)
C(3)-Fe(1)-C(4) 94.4(3)		94.4(3)	C(7)-Fe(2)-C(8)		93.0(3)
C(3)-Fe(1)-C(5) 100.6(2		.00.6(3)			
C(4)-Fe(1)-C(5)		94.5(3)			
Einige Beste Ebene	n				
Ebene A	Mn	Fe(1)	Fe(2)		
Ebene B	Те	Mn	Fe(1)		
Ebene C	Te	Fe(1)	Fe(2)		
Ebene D	Te	Mn	Fe(2)		
Ebene E ^b	C(9)	C(10)	C(11)	C(12)	C(13)
	-0.52	0.74	-0 68	0.37	0.09

Interplanarwinkel (grad)

Ebenen	В	С	D	E
A	67.9	68.2	67.6	74.2
В		73.6	72.3	59.4
С			74 0	35.6
D				56.7

Diederwinkel (grad) ^a		
Cp(Cent)-Mn-C(1)	115.6	
Cp(Cent)-Mn-C(2)	116.2	
Cp(Cent)-Mn-Fe(1)	148.4	
Cp(Cent)-Mn-Fe(2)	145.7	
Cp(Cent)-Mn-Te	65.9	
Torsionswinkel (grad)		
C(3)-Fe(1)-Fe(2)-C(6)	1.5	
C(4)-Fe(1)-Fe(2)-C(7)	1.2	
C(5)-Fe(1)-Fe(2)-C(8)	4.6	
C(4)-Fe(1)-Fe(2)-C(7) C(5)-Fe(1)-Fe(2)-C(8)	1.2 4.6	

^a Cp(Cent) = Mittelpunkt des π -gebundenen C₅Me₅-Liganden. ^b Abweichungen von der Ebene sind unter den sie definierenden Atomen angegeben (pm).

sind in Tab. 1, Bindungsdaten auszugsweise in Tab. 2 und röntgenographische Daten im Experimentellen Teil zusammengefasst *.

Nach der Einkristall-Röntgenstrukturanalyse basiert die Molekülstruktur der Cluster-Verbindung 2 auf einem trigonal-pyramidalen Ensemble von zwei Eisen-, einem Mangan- und einem Tellur-Atom, wobei wegen der voneinander wenig abweichenden Kovalenzradien dieser Elemente [7] die Abweichung von der idealen Tetraeder-Geometrie nicht sonderlich gross ist. Die drei Übergangsmetalle bilden ein gleichseitiges Drejeck, in dem die Bindungslänge zwischen den beiden Eisen-Atomen um ca. 7 pm kürzer als die vom Mangan-Atom ausgehenden Bindungen ist (Tab. 2). Dieses Dreiecksgerüst wird in etwas geringerer Entfernung (247.2-251.8 pm) vom substituentenfreien Tellur-Atom überbrückt. Während die Bindungsabstände im MnFe2-Dreieck im Wertebereich normaler Einfachbindungen zwischen diesen Elementen liegen und auch dem im Vergleich zu Eisen geringfügig grösseren Kovalenzradius von Mangan in Organometall-Verbindungen Rechnung tragen (Δr \approx 7 pm [7b]), so ist die Annäherung des substituentenfreien, das trigonal-pyramidale Koordinationspolyeder vervollständigenden Tellur-Atoms an die Übergangsmetallzentren deutlich grösser als nach der Berücksichtigung der 1°-Kovalenzradien dieser Elemente zu erwarten ist. Anschliessend an eine anderenorts geführte Diskussion [1,5,8] sollte unter Berücksichtigung des allgemein akzeptierten Kovalenzradius von 137 pm für Tellur [7] der Mangan-Tellur-Abstand etwa 270 pm betragen, und auch die Tellur-Eisen-Bindungen sollten nur wenig kürzer sein. Mit diesen Abstandsdaten kärne ein nahezu ideales Metallatetrahedran zustande. Die Abstände zwischen dem Tellur-Atom und den Übergangsmetallen sind jedoch erheblich kürzer; sie fallen in den Bereich um 250 pm und lassen damit Mehrfachbindungsanteile vermuten. Unmittelbare Vergleichsdaten sind für die Mangan-Tellur-Bindung (251.8(1) pm) verfügbar: Für die zwei- und dreikernigen Mangan-Komplexe (µ-Te) $[(\eta^5-C_5Me_5)Mn(CO)_2]_2$ [5] bzw. $(\mu_3-Te)[(\eta^5-C_5H_5)Mn(CO)_2]_3$ [9] fordert die Edelgasregel Mangan-Tellur-Doppelbindungen; hiermit im Einklang sind die ent-

^{*} Weitere Einzelheiten zur Kristallstrukturbestimmung sind beim Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen hinterlegt und können unter Angabe der Hinterlegungsnummer CSD 50831, der Autoren und des Zeitschriftenzitats angefordert werden.

sprechenden Abstände sehr kurz und betragen 245.9(2) bzw. 248.5 pm (Mittelwert) [5,9]. Auch die Eisen-Tellur-Bindungen schliessen sich dieser Abstandsverkürzung an; sie sind wegen des kleineren Kovalenzradius von Eisen noch etwas kurzer als die Mangan-Tellur-Bindung (Tab. 2).

Eine ähnliche Bindungssituation fanden Dahl et al. im verwandten Cluster-Komplex (μ_3 -Te)Co₂Fe(CO)₉ vor [10], der sich von der hier beschriebenen Verbindung **2** strukturchemisch lediglich durch Isolobalsubstitutionen ableitet. Wegen der praktisch gleichen Kovalenzradien von Eisen und Cobalt unterscheiden sich hier die Abstände zwischen dem Tellur-Atom und den Übergangsmetallzentren nicht signifikant und betragen ganz ähnlich wie in **2** ca. 247 pm. Über deutlich längere Eisen-Tellur-Abstände (265.7(1), 266.8(1) pm) berichten Lesch und Rauchfuss für das Clustermolekül der Zusammensetzung Fe₃Te₂(CO)₉[P(C₆H₅)₃]; in dieser Verbindung entsprechen die Abstände um 266 pm Eisen-Tellur-Einfachbindungen wie sie auch von der Edelgasregel gefordert werden. Den verkürzten, bei ca. 257 pm liegenden Tellur-Eisen-Bindungen kommt bei formaler Betrachtungsweise (Edelgasregel) eine Bindungsordnung > 1 zu [11].

Die übrigen Strukturmerkmale der Cluster-Verbindung 2 sind nicht ungewöhnlich, sieht man von den beiden gewinkelten, an das Mangan-Atom gebundenen Carbonyl-Gruppen ab: Letztere sind im Gegensatz zu den sechs eisenständigen, streng linearen terminalen Carbonyl-Liganden zu 155.6(5) bzw. 155.3(5)° geknickt, so dass die beiden Sauerstoff-Atome O(1) bzw. O(2) in grössere Abstände zu den jeweils benachbarten Eisen-Zentren Fe(2) bzw. Fe(1) geraten als dies bei linearer Anordnung der Fall wäre. Mit 231.5(5) bzw. 232.0(6) pm fallen die Fe(1)-C(2)- bzw. Fe(2)-C(1)-Abstände zwar noch in einen Bereich, der für unsymmetrische Carbonyl-Brücken (semi-bridging) nicht ungewöhnlich und insbesondere nicht zu gross ist [12], doch sind die Ursachen für die Notwendigkeit einer elektronischen Wechselwirkung

Fig. 1. Molekülstruktur der Cluster-Verbindung 2 im Kristall (ohne Wasserstoffatome).

dieser Art nicht unmittelbar einsichtig. Der von Curtis et al. definierte Asymmetrieparameter [13] errechnet sich für die beiden Mn-C(=O)-Fe-Fragmente von 2 zu $\alpha \approx 0.29$. Bei Berücksichtigung der ca. 155.5° betragenen Knickwinkel könnten die CO-Brücken als quasi-verbrückende (semi-bridging) Akzeptor-Liganden fungieren, die nach Cotton überschüssige Elektronendichte von den weiter entfernten Metallzentren abzuführen imstande sind [14]. Träfe dieser Sachverhalt im vorliegenden Fall zu, so müssten die Eisenatome einen verhältnismässig stark ausgeprägten Basencharakter aufweisen. Eine derartige Interpretation erscheint zumindest aufgrund des stark elektronenschiebenden Effekts der manganständigen, π gebundenen Pentamethylcyclopentadienyl-Gruppe wenig überzeugend, so dass wir den beobachteten Abwinkelungseffekt vorläufig eher als sterisch erzwungenes Phänomen betrachten. Auch der von Huttner synthetisierte, strukturchemisch mit 2 völlig analoge Schwefel-Cluster (η^5 -C₅H₄CH₃)MnFe₂S(CO)₈ (S statt Te, C₅H₄CH₃ statt C₅Me₅) besitzt abgewinkelte MnCO-Gruppen [15].

Die hier beschriebene Cluster-Verbindung 2 zählt nicht nur zu den wenigen bisher bekannten höherkernigen Tellur-Komplexen [9–11,16–21], sondern folgt auch einem neuen Synthesekonzept, das ausgehend von Übergangsmetall-Tellur-Mehrfachbindungen durch Isolobalsubstitutionen den gezielten Aufbau tellurhaltiger Cluster-Strukturen erlaubt.

Experimenteller Teil

Die Synthese der Cluster-Verbindung 2 erfolgte unter Ausschluss von Luft und Feuchtigkeit und Verwendung absolutierter, stickstoffgesättigter Lösungsmittel (Schlenk-Technik, vgl. Lit. 22). Der μ -Tellur-Komplex 1 wurde durch Umsetzung von $(\eta^5-C_5H_5)Mn(CO)_2(THF)$ (Me = CH₃) mit Aluminiumtellurid in Gegenwart von wässriger Salzsäure nach Lit. 5 synthetisiert. Die Bereitung von Enneacarbonyldieisen erfolgte nach Lit. 22.

$(\mu_{3}$ -Tellur)triangulo-bis(tricarbonylferrio)dicarbonyl $(\eta^{5}$ -pentamethylcyclopentadienyl)mangan(Fe–Fe, 2Fe–Mn) (2)

In einem 500 ml-Zweihalskolben mit Tropftrichter und Quecksilberüberdruckventil bereitet man eine Suspension von 1.20 g (3.3 mmol) $Fe_2(CO)_9$ in 100 ml Diethylether. Unter kräftigem Rühren tropft man hierzu eine Lösung von 0.80 g (1.29 mmol) 1 in 100 ml Diethylether. Nach 4 h Rühren bei Raumtemperatur filtriert man die Suspension über eine mit Filterflocken (Macherey-Nagel, Art.-Nr. 2101) beschickte D3-Fritte und zieht das Lösungsmittel des Filtrats anschliessend im Ölpumpenvakuum ab. Den verbleibenden Rückstand bringt man zur chromatographischen Reinigung auf eine mit n-Hexan/Florisil (Merck 12999; 100–200 mesh ASTM) gefüllte Säule (30×1.0 cm; -40° C).

Mit n-Hexan wird zunächst eine kurze Zone von gelbem $(\eta^5-C_5Me_5)Mn(CO)_3$ eluiert; diese Verbindung bildet sich im Zuge der Fragmentierung von 1 in Gegenwart von Fe₂(CO)₉. Mit n-Hexan/Toluol (1 + 2 Vol.-Teile) eluiert man den Cluster-Komplex 2, dessen Kristallisation (nach Eindampfen im Vakuum) aus Diethylether/n-Hexan bei -35° C erfolgt. Die schwarzen Kristalle werden mit n-Hexan gewaschen und im Hochvakuum getrocknet. Ausb. ca. 140 mg (15%, bez. auf 1). Die kristalline Substanz ist in polaren Lösungsmitteln gut löslich; diese Lösungen sind luftempfindlich. Im festen Zustand tritt ab etwa 140°C Zersetzung ein. Elementaranalyse: Gef.: C, 32.80; H, 2.20. $C_{18}H_{15}Fe_2MnO_8Te$ (653.56) ber.: C, 33.08; H, 2.31%. Molmasse 656 (EI-Massenspektrum, Bezugsisotope ¹³⁰Te, ⁵⁶Fe). Infrarot-Spektrum (ν (CO) cm⁻¹): 2040st, 1998Sch, 1980sst(br), 1960s, 1950Sch, 1936ss, 1858st, 1820st [KBr]; 2057sst, 2010sst, 1955sst, 1980m, 1962s, 1862st, 1830m [Toluol]; 2057sst, 2015sst, 1995sst, 1980m, 1962m, 1864st, 1830st [THF]. ¹H-NMR-Spektrum (270 MHz, CDCl₃, 25°C): δ (CH₃) 1.87 ppm (s).

Röntgenographische Daten des Metallatetrahedrans 2

Kristallgrösse: $0.5 \times 0.3 \times 0.2$ mm (Rhomben): d_{rontg} 1.95 Mg m⁻³; F(000) = 1264; Kristallsystem monoklin, Raumgruppe $P2_1/n$; a 982.4(2), h 1483.6(3), c 1535.5(5) pm; β 97.22(2)°; V 2220 × 10⁶ pm³, Z = 4; linearer Absorptionskoeffizient: μ 31.6 cm⁻¹; optimale Kristalldicke: t 0.06 cm; system. Auslöschungen: 0k0 (k = 2n + 1), h0l (h + l = 2n + 1); 3862 Reflexe, davon 3456 mit $l > 2.5\sigma(l)$ (Syntex P3; Mo- K_{α} -Strahlung, λ 71.069 pm; Messbereich: $3^{\circ} \leq 2\theta \leq 55^{\circ}$): R(isotrop) = 0.13, R(anisotrop) = 0.036, $R_w = \Sigma |F_c - F_o|\sqrt{wght} / \Sigma F_o\sqrt{wght} = 0.033$ (wght = $1/\sigma^2(F)$). Strukturlosung und -verfeinerung vgl. Lit. 23, 24.

Dank

Diese Arbeit erfuhr grosszügige Unterstützung durch die Deutsche Forschungsgemeinschaft, den Fonds der Chemischen Industrie, die HOECHST Aktiengesellschaft, die DEGUSSA AG und die Herbert Quandt-Stiftung der VARTA BAT-TERIE AG. Hierfür danken wir an dieser Stelle herzlich.

Literatur

- 1 W.A. Herrmann, J. Rohrmann, M.L. Ziegler und Th. Zahn, J. Organomet. Chem., 273 (1984) 221.
- 2 Zusammenfassung: R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem. Int. Ed. Engl., 21 (1982) 711 (Nobel-Vortrag).
- 3 Zusammenfassung: F.G.A. Stone, Angew. Chem., 96 (1984) 85; Angew. Chem. Int. Ed. Engl., 23 (1984) 85.
- Neuere Übersichtsartikel: (a) P. Chini, J. Organomet. Chem., 200 (1980) 37; (b) E.L. Muetterties, ibid., 200 (1980) 177; (c) W.L. Gladfelter und G.L. Geoffroy, Advan. Organometal. Chem., 18 (1980) 207; (d) H. Vahrenkamp, ibid., 22 (1983) 169; (e) M. Tachikawa und E.L. Muetterties, Progr. Inorg. Chem., 28 (1981) 203 (Carbido-Cluster).
- 5 W.A. Herrmann, Ch. Hecht, M.L. Ziegler und B. Balbach, J. Chem. Soc, Chem. Commun., (1984) 686.
- 6 Das durch Einfachbindungen mit Übergangsmetallen verknupfte ligandfreie Tellur-Atom im Komplex $(\mu$ -Te)[$(\eta^5$ -C₅H₅)Cr(CO)₃]₂ ist dagegen mit HBF₄/Diethylether protonierbar, vgl. Lit. 1.
- 7 (a) L. Pauling, Die Natur der chemischen Bindung, 3. Aufl., S. 217 und S. 245, Verlag Chemie, Weinheim 1976; (b) A.F. Wells, Structural Inorganic Chemistry, 4. Aufl., S. 236 (Tab. 7.4) und S. 1022 (Tab. 29.5), Clarendon Press, Oxford, 1975.
- 8 W.A. Herrmann, J. Weichmann, M.L. Ziegler und H. Pfisterer, Angew. Chem. Suppl., (1982) 1223.
- 9 M. Herberhold, D. Reiner und D. Neugebauer, Angew. Chem., 95 (1983) 46, Angew. Chem. Int. Ed., Engl., 22 (1983) 59; Angew. Chem. Suppl., (1983) 10.
- 10 C.E. Strouse und L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6032
- 11 D.A. Lesch und T.B. Rauchfuss, Organometallics, 1 (1982) 499.
- 12 R. Colton und M.J. McCormick, Coord. Chem. Rev., 31 (1980) 1.
- 13 Zusammenfassung: M.D. Curtis, L. Messerle, N.A. Fotinos und R.F. Gerlach, in M.H. Chisholm (Hrsgb.), Reactivity of Metal-Metal Bonds, ACS Symposium Series, Vol. 155, S. 221ff., American Chemical Society, Washington, D.C. 1981.
- 14 F.A. Cotton, Progr. Inorg. Chem., 21 (1976) 1.
- 15 G. Huttner. personliche Mitteilung (Marz 1984).

- 16 Ubersichtsartikel: D.P.N. Satchell, Chem. Soc. Rev., 6 (1977) 345.
- 17 R. Rosetti, G. Cetini, O. Gambino und P.L. Stanghellini, Atti Acad. Sci. Torina, U. Sci. Fis., Mat. Nat., 104 (1969-1970) 127.
- 18 B.F.G. Johnson, J. Lewis, P.G. Lodge, P. Raithby, K. Hendrick und M. McPartlin, J. Chem. Soc., Chem. Commun., (1979) 719.
- 19 D.A. Lesch und T.B. Rauchfuss, J. Organomet. Chem., 199 (1980) C6.
- 20 D.A. Lesch und R.B. Rauchfuss, Inorg. Chem., 22 (1983) 1854.
- 21 W. Hieber und J. Gruber, Z. Anorg. Allgem. Chem., 296 (1958) 91.
- 22 W.P. Fehlhammer, W.A. Herrmann und K. Ofele, Metallorganische Komplexverbindungen, in G. Brauer (Hrsgb.), Handbuch der Präparativen Anorganischen Chemie, 3. Aufl., 3. Band, S. 1799ff., Ferdinand Enke-Verlag, Stuttgart 1981.
- 23 G.M. Sheldrick, SHELXTL Programm, Version 1980, Anorganisch-chemisches Institut der Universität Göttingen.
- 24 International Tables for X-Ray Crystallography, Vol. IV, S. 99, Kynoch Press, Birmingham 1974.